![]() |
Да, да - ты уже начитался теории, прочитал, что такое электрический ток, что такое сопротивление, узнал кто такой товарищ Ом и еще много чего. И теперь ты хочешь резонно спросить - "И чего? Толк то в этом во всем какой? Куда это все приложить то можно?". А возможно ты ничего этого и не читал, потому как это страшно скучно, но приложить руки к чему то электронному все таки хочется. Сейчас мы как раз и займемся тем, что приложим все это как следует и спаяем первую реальную конструкцию, которая очень тебе пригодится в дальнейшем.
Делать мы будем блок питания для питания различных электронных устройств, которые мы соберем в дальнейшем. Ведь если мы сначала соберем, например, радиоприемник он все равно работать не будет, пока мы не дадим ему питания.
Итак, приступим. Прежде всего зададимся начальными параметрами - напряжением, которое будет выдавать наш блок питания и максимальный ток, который он способен будет отдать в нагрузку. То есть, насколько мощную нагрузку можно будет к нему подключить - сможем ли мы подключить к нему только один радиоприемник или же сможем подключить десять? Не спрашивайте меня зачем включать десять радиоприемников одновременно - не знаю, я просто для примера сказал.
Для начала, давайте подумаем над выходным напряжением. Предположим, что у нас есть два радиоприемника, один из которых работает от 9 вольт, а второй от 12 вольт. Не будем же мы делать два разных блока питания для этих устройств. Отсюда вывод - нужно сделать выходное напряжение регулируемым, чтобы его можно было настраивать на разные значения и питать самые разнообразные устройства.
Наш блок питания будет иметь диапазон регулировки выходного напряжения от 1,5 до 14 вольт - вполне достаточно на первое время. Ну а ток нагрузки мы с вами примем равным 1 амперу.
Схема нашего блока питания:

Проще не бывает, не правда ли? Итак, какие же детальки нам понадобятся, чтобы спаять эту схемку? Прежде всего, нам потребуется трансформатор с напряжением на вторичной обмотке 13-16 вольт и током нагрузки не менее 1 ампера. Он обозначен на схеме как Т1. Также нам понадобится диодный мостик VD1 - КЦ405Б или любой другой с максимальным током 1 ампер. Идем дальше - С1 - электролитический конденсатор, которым мы будет фильтровать и сглаживать выпрямленное диодным мостом напряжение, его параметры указаны на схеме. D1 - стабилитрон - он заведует стабилизацией напряжения - ведь мы же не хотим, чтобы напряжение на выходе блока питания колебалось вместе с сетевым напряжением. Стабилитрон мы возьмем Д814Д или любой другой с напряжением стабилизации 14 вольт. Еще нам понадобятся постоянный резистор R1 и переменный резистор R2, которым мы будем регулировать выходное напряжение. А так же два транзистора - КТ315 с любой буковкой в названии и КТ817 тоже с любой буковкой. Для удобства, я загнал все нужные элементы в табличку, которую можно распечатать и вместе с этим листочком отправится в магазин на закупку.
| Обозначение на схеме | Номинал | Примечание |
| Т1 | Любой с напряжением вторичной обмотки 12-13 вольт и током 1 ампер | |
| VD1 | КЦ405Б | Диодный мост. Максимальный выпрямленный ток не менее 1 ампера |
| C1 | 2000 мкФх25 вольт | Электролитический конденсатор |
| R1 | 470 Ом | Постоянный резистор, мощность 0,125-0,25 Вт |
| R2 | 10 кОм | Переменный резистор |
| R3 | 1 кОм | Постоянный резистор, мощность 0,125-0,25 Вт |
| D1 | Д814Д | Стабилитрон. Напряжение стабилизации 14В |
| VT1 | КТ315 | Транзистор. С любым буквенным индексом |
| VT2 | КТ817 | Транзистор. С любым буквенным индексом |
Паять все это можно как на плате, так и навесным монтажем - благо элементов в схеме совсем немного. Транзистор VT2 необходимо обязательно установить на радиатор. Оптимальную площадь радиатора можно выбрать экспериментально, но она должна быть не меньше 50 кв. см. При правильном монтаже схема совершенно не нуждается в настройке и начинает работать сразу. Подключаем тестер или вольтметр к выходу блока питания и устанавливаем резистором R2 необходимое нам напряжение.
Далее расскажу о том, как рассчитывался этот блок питания и как рассчитать свой собственный.
Итак, наш блок питания состоит из двух основных узлов - это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.
Стабилизатор
Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 - сам стабилизатор на стабилитроне D с балластным резистором Rб
2 - эмиттерный повторитель на транзисторе VT.
Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно - умощителя.
Два основных параметра нашего блока питания - напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых - это напряжение
и
Imax - это ток.
Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:
Uвх = Uвых + 3
Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.
Транзистор
Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.
Считаем:
Pmax=1.3(Uвх-Uвых)Imax
Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:
Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 - вполне приличный транзистор…
Считаем сам стабилизатор.
Сначала определим максимальный ток базы свеже-выбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все - даже базы транзисторов).
По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.
Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор - 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале - с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
мы поговорим о еще одном типе стабилизаторов — компенсационном . Как видно из названия, принцип действия их основан на компенсации чего то чем то. Чего и чем сейчас узнаем. Для начала, рассмотрим схему простейшего компенсационного стабилизатора. Его схема более сложная, чем обычного параметрического, но совсем чуть-чуть.
Ну а теперь перейдём к сладкому — к стабилизаторам на микросхемах. Я их называю стабилизаторами для ленивых, поскольку на пайку такого стабилизатора уходит минуты две, если не меньше. Чтобы сильно не тянуть резину, сразу переходим к схеме, хотя схема то…| Микросхема | Напряжение стабилизации, В | Макс. ток, А | Расс. Мощн., Вт | Потребл. Ток мА |
| (К)142ЕН5А (К)142ЕН5Б (К)142ЕН5В (К)142ЕН5Г |
5±0,1 6±0,12 5±0,18 6±0,21 |
3,0 3,0 2,0 2,0 |
5 | 10 |
| (К)142ЕН8А (К)142ЕН8Б (К)142ЕН8В |
9±0,15 12±0,27 15±0,36 |
1,5 | 6 | 10 |
| К142ЕН8Г К142ЕН8Д К142ЕН8Е |
9±0,36 12±0,48 15±0,6 |
1 | 6 | 10 |
|
(К)142ЕН11 |
1.2…37 | 1,5 | 4 | 7 |
| (К)142ЕН12 КР142ЕН12А |
1.2…37 1,2…37 |
1.5 1,0 |
1 | 5 |
| КР142ЕН18А КР142ЕН18Б |
-1,2…26,5 -1,2…26,5 |
1,0 1,5 |
1 | 5 |
[/center]

Такие вот пироги. Кстати, пока не забыл — микросхемы обязательно надо ставить на радиатор, иначе они сдохнут, причем довольно шустро. Правда грустно.
Категория: Радио начинающим